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Abstract
We re-investigate some classical approaches for collisional absorption of laser
radiation in dense plasmas and compare them to quantum theories. The typical
break-down of the classical approaches can be avoided by using the quantum
dielectric function in the seminal Dawson and Oberman formula which is
equivalent to recently published quantum theories of collisional absorption.
Strong electron–ion scattering can however be included more easily in classical
approaches.

PACS numbers: 52.38−r, 52.38.Dx, 52.27.Gr

1. Introduction

The goal of inertial confinement fusion and the understanding of large astrophysical
objects give rise to renewed interest in dense plasmas and warm dense matter. Key
features of such matter are strong ion–ion coupling and degenerate electrons with �ii =
(Z2e2/kBTe)(4πni/3)1/3 > 1 and ne(2πh̄2/mekBTe)

3/2 > 1, respectively [1, 2]. One
approach to create such plasmas in the laboratory is laser–solids interactions. In particular,
research on inertial fusion needs relatively long heating with intermediate laser intensity
leaving the target in the warm dense matter state [3].

Laser energy can be coupled to matter by different mechanisms. In dense plasmas, inverse
bremsstrahlung is the primary one for low and intermediate intensities. The first calculations
of this process were done in the high frequency and small field limit [4, 5]. Later Decker
et al generalized this approach to strong laser fields [6]. As the ballistic model of [7], these
theories use classical electron–ion interactions and, thus, include an ad hoc cutoff to avoid
a divergence at close collisions. Accordingly, they break down for moderately and strongly
coupled plasmas.

The first quantum treatment was presented by Perel’ and Éliashberg [8]. Later full quantum
approaches were used to include the effects of strong laser fields during weak collisions, strong
ion–ion correlations (described by an HNC approach) and strong collisions in weak laser fields
using a T-matrix approach [9–14]. For certain regions, these quantum results were shown to
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match molecular dynamics (MD) simulations [12, 15]. Furthermore, strong ionic correlations
were included in the memory function formalism [16].

In this contribution, we use the fact that the early Dawson and Oberman approach [4]
produces results identical to quantum theories [10, 11], provided that the full quantum dielectric
function is used rather than its classical or small argument versions. It is also in good agreement
with MD simulations [12, 15] although neither field contributions during scattering nor strong
interactions are accounted for. It is shown that improved choices for the impact parameters
in the classical expressions yield rather good results up to intermediate coupling strengths of
� ∼ 1.

2. Classical approaches to collisional absorption

First, we briefly review the early results for laser absorption by inverse bremsstrahlung.
These were usually cast in terms of the cycle averaged collision frequency defined as
νei = (

4πω2
0/ω

2
p

)〈j · E〉/〈E · E〉 by Silin [5]. Within a dielectric approach, Decker et al
obtained for this quantity in the high-frequency limit [6]

νei

ωp

= Ze2π2ω0

2mev
2
0ωp

∞∑
n=−∞

∫
d3k

i

k2

nJ 2
n (k · ε)

ε(k, nω0)
Sii(k). (1)

Here, ω0 is the frequency of the laser field, E0 is its amplitude, Z is the mean ion charge state,
Sii(k) is the ionic structure factor, ω2

p = 4πnee
2/me is the plasma frequency, v0 = eE0/meω0

is the quiver velocity of a free electron moving in the laser field and Jn are Bessel functions of
the first kind. The abbreviation ε = −eE0/meω

2
0 denotes the amplitude of the free electron

oscillation. Expression (1) describes the collective electron–ion interaction screened by the
classical dielectric function

ε(k, ω) = 1 +
ω2

p

k2
lim
ε→0

∫
d3u

k · (∂f0/∂u)

ω − k · u + iε
. (2)

Interestingly, the form (1) follows also from quantum theories (Vlassov and in Born
approximation) [10, 11]. In this case, the dielectric response must be calculated within
the quantum random phase approximation (RPA) [2].

Considering mainly short range collisions with k > kD (kD = λ−1
D = ωp/vth is the

inverse Debye length and vth = kBTe/me is the thermal electron speed), Decker et al used
a small argument approximation of the dielectric function [6]. This leads to the following
approximate form of expression (1)

νei

ωp

= Z

(2π)3/2

ω2
0v

2
th

ω2
pv2

0
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n2
∫ 1

−1
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0
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J 2
n (ημkDε)

η3
exp

(
−1

2

n2ω2
0

η2ω2
p

)
. (3)

Here, integration is limited to ηmax = bmin/bmax (see below for a discussion of the cutoffs)
and the ions are assumed to be uncorrelated: Sii(k) = 1.

Often the weak field limit of expression (1) is used for its simplicity. In the limit of
v0/vth � 1 and ω0 � ωp, one can approximate the integral and obtains

νei

ωp

≈ Z

3

1

(2π)3/2

(
1

neλ
3
D

) [
ln

(√
2
ωp

ω0

)
+ ln �

]
. (4)

ln � = ln(bmax/bmin) is the (Spitzer-like) Coulomb logarithm with cutoffs usually set
to be the electron Debye length and the distance of closest approach, i.e., bmax = λD

and bmin = ρ⊥ = Ze2
/
mev

2
th, respectively. Quantum diffraction can be approximately
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incorporated by the interpolation bmin = (
λ̄

2 + ρ2
⊥
)1/2

, where λ̄ = h̄/2mevth is the deBroglie
wavelength. One should, however, keep in mind that these cutoffs try to describe three aspects:
strong classical collisions at small k, weak, Born-like collisions at large k and the weighting
by the appropriate electron distribution. In the following, the upper combination is labelled
‘LS’ for the usual Landau–Spitzer description.

Obviously, the LS approach fails when bmax/bmin becomes smaller than unity which
occurs for dense, strongly coupled plasmas. This is partially linked to the use of straight
electron trajectories when describing electron–ion collisions. Using hyperbolic orbits
appropriate for Coulomb collisions, one obtains a Coulomb logarithm of the form ln � =
1
2 ln

(
1 + b2

max
/
b2

min
)

[17–19]. This form will be labelled ‘HLS’ and uses bmax and bmin as
defined in the LS description. It has the advantage of avoiding a total break-down, but the
results become questionable at strong coupling, too.

Of course, a rigorous quantum-mechanical treatment of collisional absorption
automatically avoids divergent integrals and, therefore, the problems related to the Coulomb
logarithm vanish as well. Kremp et al [9] first derived a quantum kinetic equation for
dense plasmas in strong laser fields where all scattering processes can be taken into account
by appropriate generalised scattering rates [9]. Based on this kinetic approach, a quantum
statistical description for the collision frequency νei was derived [10]. The results are however
limited to weak electron–ion interactions due to the use of the first Born approximation in the
scattering rates. Similar results were obtain by applying Zubarev’s linear response formalism
to collisional absorption [13]. Here, strong collisions in weak fields can be included as
well [14].

3. Comparison of the different approaches for the collision frequency

Results obtained from the different theories presented above are shown in figure 1. One finds
good agreement for weakly coupled plasmas and increasing discrepancies for higher coupling
strengths. Clearly, the models using LS-like Coulomb logarithms break down around � = 1.
This fatal behaviour is avoided by considering hyperbolic orbits which can be regarded as
absolutely necessary to allow for an easy-to-use classical description in a wider parameter
space. For strongly coupled plasmas with � > 1, the HLS description gives smaller collision
frequencies than quantum theories. This might be explained by the fact that the latter employ
a Born approximation which becomes questionable in this region and tends to give larger
scattering rates [17, 20]. A full description of collisional absorption should of course include
a quantum description of strong electron–ion scattering.

The agreement of the results obtained by equations (4) and (3) underlines that the weak
field approximation is applicable for the case with v0 = 0.2vth. The small differences are
highlighted around the point where the LS Coulomb logarithm starts to fail.

A large body of published data exists for ne = 1022 cm−3, ω0 = 3ωp and v0 = 0.2vth.
Here, most simulations and quantum theories agree within a factor of a few; even for strongly
coupled plasmas. Differences may be traced back to the use of the Born approximation, the
high-frequency approximation or the application of not well-defined quantum potentials in the
classical MD simulations.

In conclusion, our results indicate that the field effects on the collisions are weak for the
parameters considered. The application of a quantum dielectric function in equation (1) as
well as the HLS Coulomb logarithm in the reduced model of equation (4) yield well-defined
collision frequencies. Both approaches agree up to � ≈ 1 and show the well-known deviations
for higher coupling. Cutoffs fitted to T-matrix results of temperature relaxation rates [17] do
not significantly modify the HLS results (not shown).
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Figure 1. Comparison of different theoretical models and simulations for the collision frequency.
Shown are results for constant densities (left) and temperatures (right) versus coupling strength of
the plasma for a constant ratio of v0/vth = 0.2. HNCMF denotes hypernetted chain calculations
used in the memory function approach [16] and QKT stands for the quantum kinetic theory [10].
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